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Abstract

Learning by doing, especially spillover learning, has
received much attention lately in models of industry evolution
and economic growth.  The predictions of these models depend on
the distribution of learning abilities and knowledge flows across
firms and countries.  However, the empirical literature provides
little guidance on these issues.

In this paper, I use plant level data on a sample of
entrants in SIC 38, Instruments, to examine the characteristics
associated with both proprietary and spillover learning by doing. 
The plant level data permit tests for the relative importance of
within and between firm spillovers.  I include both formal
knowledge, obtained through R&D expenditures, and informal
knowledge, obtained through learning by doing, in a production
function framework.  I allow the speed of learning to vary across
plants according to characteristics such as R&D intensity, wages,
and the skill mix.  

The results suggest that (a) “informal” knowledge,
accumulated through production experience at the plant, is a much
more important source of productivity growth for these plants
than is “formal” knowledge gained via research and development
expenditures, (b) interfirm spillovers are stronger than
intrafirm spillovers, (c) the slope of the own learning curve is
positively related to worker quality, (d) the slope of the
spillover learning curve is positively related to the skill mix
at plants, (e) neither own nor spillover learning curve slopes
are related to R&D intensities.  These results imply that
learning by doing may be, to some extent, an endogenous
phenomenon at these plants.  Thus, models of industry evolution
that incorporate learning by doing may need to be revised.  The
results are also broadly consistent with the recent growth
models.

Keywords: learning by doing, productivity, spillovers.



1  As opposed to that gained through more formal knowledge generating
activities, such as research and development.
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I.  INTRODUCTION

Economists have recognized that learning by doing is a

significant factor in industry evolution (e.g.,  Spence, 1981,

Jarmin, 1994 and Jovanovic and Nyarko, 1994) and an  important

source of economic growth (e.g., Grossman and Helpman, 1992 and

Lucas, 1993 ).  They have constructed several theories that

exploit learning by doing to explain a variety of economic

phenomena.  Yet most empirical evidence on learning by doing is

limited to showing the existence of the learning curve in various

settings.  

If learning by doing is to play an important role in

economic modeling, more needs to be known about how knowledge

generated via production experience1 is translated into

improvements in productivity.  An assumption implicit in many

theoretical models is that learning by doing occurs

automatically.  However, the slope of the learning curve (the

rate at which productivity increases for each doubling of

production experience) can vary significantly across firms

(Jarmin, 1994).  This suggests that the process of learning by

doing may be more complex than is usually assumed.

Therefore, it is important to understand if and how learning

curve slopes vary across plants, firms or countries and if these
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differences are systematically related to any observable

characteristics of the plants, firms and countries involved. 

This information can be used to assess the accuracy of the

assumptions used in the theoretical literature to date, and to

suggest new approaches for the future.  At present, there are

only a handful of empirical studies that are available to

determine the validity of the assumptions made in theoretical

models.  

In this paper, I extend this growing empirical literature,

by examining the relationship between plant characteristics and

learning by doing for a sample of plants that enter SIC major

group 38, instruments.  Specifically, I test four groups of

hypotheses concerning learning by doing.  First, I look at the

relationship between the quality (as proxied by wages) of both

production and non production workers and learning by doing. 

Second, I test for a correlation between learning and the skill

mix at plants.  Third, I examine the relationship between

learning and R&D intensity. Finally, because I have plant level

data, I look at intra vs. inter firm learning spillovers.

The rest of the paper is organized as follows.  I first

provide some background in section II.  In section III, I outline

the production function framework I adopt to examine learning by

doing for a sample of entrants in SIC 38.  I discuss the data in

section IV.  I present the empirical results in section V and



2  For an example see Jarmin (1994).
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conclude the paper in section VI.

II.  BACKGROUND

The literature on learning by doing dates to Wright (1936). 

The negative (positive) relationship between costs (productivity)

and experience discussed by Wright has been confirmed empirically

by several subsequent authors (see Alchian, 1963, Rapping, 1965,

Sheshinski, 1967 and the Boston Consulting Group, 1972).  Arrow

(1962) did early theoretical work on learning by doing.  More

recent theoretical investigations have focused on the

implications of learning by doing for industry evolution and

economic growth.

A.  Theoretical Results

In the industrial organization literature (IO), researchers

have focused on the intertemporal link that learning by doing

creates between the output strategies firms employ today and the

technological and competitive environment in which they operate

in the future.  Outcomes, in these models, depend on whether

these strategies are viewed as strategic complements or strategic

substitutes2.  Strategic substitutes are likely when learning is
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proprietary (i.e., firms can appropriate all the benefits of

their experience).  In this case, firms have the incentive to

overproduce early and invest in future cost reduction (see

Spence, 1981 and  Fudenberg and Tirole, 1983).  By doing this,

incumbent firms can exploit the learning curve to gain an

absolute cost advantage over potential entrants and deter entry. 

However, if experience is, to some extent, a public good, the

incentive to overproduce is diminished since the ability of

incumbents to exploit the learning curve strategically is

curtailed (see Ghemawat and Spence, 1985).  That is, output

strategies become more complementary the larger spillovers are

relative to proprietary learning.  The actual market outcome

depends on the distribution of learning benefits (both

proprietary and spillover) across firms.

Growth theorists have exploited learning by doing to

construct models of sustained economic growth (see Stokey, 1988,

Young, 1991, and Grossman and Helpman, 1992).  Lucas (1993)

argues that these models offer a compelling explanation for the

differences in the growth rates of similarly endowed economies,

such as Korea and the Philippines.  Namely, by producing a

“higher quality” mix of goods relative to the Phillippines,

Korean workers obtain, via learning by doing, the human capital

necessary to produce even better goods.  This is because

experience accumulated from producing older, lower quality goods
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spills over to the newer and higher quality goods.

The extent to which models, in both the IO and growth

literatures, can be said to accurately capture the essential

features of the phenomena they attempt to describe, depends upon

the validity of their assumptions.  Particularly important are

those about spillovers.  In the IO literature, the ability of

firms to strategically exploit the learning curve to deter entry

depends on interfirm spillovers being weak relative to

proprietary learning.  To generate sustained economic growth, it

is necessary to assume that there are strong spillovers from

older generations of goods to newer, higher quality ones.

B.  Empirical Results

There is a large and growing body of empirical evidence, on

the extent and nature of learning by doing in the economy, that

can be used to assess the validity of the assumptions used in

theoretical models.  The early empirical studies, mentioned

above, primarily test for the existence of learning by doing and

offer little guidance in assessing the realism of recent

theoretical models.  Beyond detecting the presence of learning,

it is important to know the relative importance of proprietary

and spillover learning, the sources of spillovers, whether

learning rates (both proprietary and spillover) differ across

plants, firms, industries and economies and, if so, what
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characteristics are associated with these differences.  There are

a handful of recent empirical studies that address a few of these

issues.  For convenience, these are summarized in table 1.

Lieberman (1982, 1984) examines learning, at the product

level, in the chemical processing industries.   He finds that

differences in learning rates across products are related to R&D

and capital intensities but not to process type or the prevalence

of multi-plant operations in the industry.  He assumes price cost

margins are constant, over time, so that he can use price, rather

than cost, as his dependent variable.  He gives the conditions

under which price is an appropriate proxy for costs.  These

include that the elasticity of demand is constant over time and

that experience is a pure public good.  However, since he employs

industry level data, he cannot directly test to see if these

conditions are satisfied.

Lester and McCabe (1993) look at plant level data on

commercial nuclear reactors from the U.S. and France.  They use a

measure of reactor unavailability as their dependent variable. 

Their results suggest that intrasite spillovers (most sites have

multiple reactors) are stronger than intrafirm spillovers that

are, in turn, stronger that interfirm spillover.   They also show

that spillover learning rates are faster for information flows

coming from reactors of the same type and from older reactors to

newer ones (i.e., intergenerational spillovers).  Finally, they
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show that learning rates where lower for U.S. plants than for

those in France.  They attribute this to differences in market

structure across the two countries.  Namely, French reactors are

owned by a state run monopoly and are much more standardized than

are those in the U.S.  These conditions are more conducive for

strong spillover learning.

Jarmin (1994) estimates a structural model of learning in

the early rayon industry.  Although price is the dependent

variable, the model does not impose constant price cost margins. 

The model also allows proprietary and spillover learning

coefficients to vary by firm.  The results suggest that both

differed significantly across firms in the early rayon industry. 

The model also contains parameters that measure whether firms

accounted for the strategic implications of learning by doing in

making their output choices.  The results suggest that rayon

producers did not follow myopic strategies and considered rival

reactions to their decisions.  

Finally, Irwin and Klenow (1994) look at firm level data in

the semiconductor industry.  They also use price as the dependent

variable in a model that does not impose constant price cost

margins.  They find no intercountry differences in spillover

learning and that Japanese firms learn no faster than U.S. firms. 

In contrast to Lester and McCabe (1993), they find little

evidence of intergenerational spillovers.  Their results suggest
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that some assumptions made in the growth models may need to be

revised. 

III.  MODEL

Learning by doing typically refers to the negative

relationship between experience and average production costs. 

The most common empirical formulation is the log-linear learning

curve, where the log of average cost (or some proxy, when cost

data are not available) is related to the log of one or more

indices of experience.  Typical measures of experience include

cumulative output, cumulative investment and time.  Plant

specific (or firm specific, depending on the unit of analysis)

indices of experience capture proprietary learning by doing and

industry wide indices measure spillovers.

Learning can also be viewed from a production point of view

(see Rapping, 1965, Nguyen and Kokkelenberg, 1992 and Bahk and

Gort, 1993).  The data I employ in this paper require this

approach.  Thus, I include measures of experience  in a Cobb-

Douglas production function

where Yit is value added for plant i in year t, Kit is the book

value of capital, Lit is total employment and git is the error
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term.  

Three different types of knowledge stocks are included as

inputs.  First, Rit is the stock “formal” knowledge obtained

through investments in research and development (R&D).  Second,

Xit is a plant specific measure of the stock of “informal”

knowledge obtained through experience.  In the analysis below, I

proxy this as the plant’s cumulative output.  Finally, Zit is a

measure of the “informal” knowledge obtained through the

experience of other plants in same 4-digit SIC industry as plant

i.  All knowledge stocks in this paper are beginning of period

stocks.

Following the typical practice, I rewrite equation (1) as

where the small letters denote natural logarithms.  This

expression can be estimated with OLS and the coefficient on labor

measures deviations form constant returns to scale.

IV.  DATA 

I estimate (2) with data for plants entering SIC 38,

Instruments, after 1972.  Entry can occur either by the birth of

new plants or by plants switching from another 2 digit SIC major

group.  I choose to focus on entrants for two reasons.  First,

learning by doing is typically thought to be more important for



3  A number of empirical studies suggest that the benefits of learning
are short lived (e.g., Bahk and Gort, 1993 and  Jarmin, 1994).  Thus, existing
plants would be expected benefit less from learning than new plants.  Existing
plants may benefit from episodes of learning initiated by major capital
investments or product line changes.  My definition of entry includes existing
plants that have dramatically changed their product mix as well as new births. 
Identifying major capital investments is more problematic.
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new plants3.  Second, because the data set I use does not contain

complete histories for older plants, constructing precise own

cumulative output measures for entrants only is possible.

The data for this study are taken from two sources.  First,

I extract annual data for plants operating in SIC major group 38,

Instruments, from the Census Bureau’s Longitudinal Research

Database (LRD) for the years 1972 through 1988.  Second, I obtain

firm level data on annual research and development (R&D)

expenditures from the Survey of Research and Development. 

To construct the samples used in the analysis below, I place

the following requirements on the plant observations from the

LRD.  First, plants must enter SIC 38 after 1972.  The LRD does

not contain a complete history of plants that existed before 1963

and annual data are not available until 1972.  Therefore, to

maximize the accuracy of the cumulative output measures, I

examine learning at only those plants that enter after 1972.  I

allow plants to enter the industry either through birth or by

switching industries. Although plants that enter via switching

have accumulated production experience in their previous 2 digit

industry, I compute cumulative output using only what plants



4  The LRD contains 7888 and 10,193 plants in SIC 38 in 1977 and 1987,
respectively.
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produce after entering SIC 38.

Second, I require that plants be in the LRD and in SIC 38

for a minimum of two years.  This is the most lenient restriction

on the number of observations per plant that still ensures

the plant will have at least one observation for which computing

its cumulative output is possible.

From 1972 to 1988 the LRD contains 57,116 plant/year

observations for 20,567 plants in SIC 384.  The 5,992 plants that

meet the above requirements contribute 21,729 plant/year

observations, over this period.  When these are matched with the

R&D data, the number of observations drops to 6,704.

Variable construction is described in the Appendix A.  Table

2 contains summary statistics for the base sample and the R&D

subsample.  Note that the plants in the R&D subsample are much

larger, more productive and more capital intensive than those in

the base sample.

V.  EMPIRICAL RESULTS

Estimates of equation (2), using these data,  are provided

in table 3.  To estimate (2), I replace the time trend with year

dummies.  I also include dummies for 4-digit SIC industry and for



5  These are New England, Middle Atlantic, East North Central, West North
Central, South Atlantic, East South Central, West South Central, Mountain and
Pacific.
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the 9 census regions5.  Finally, I also include dummies that

control for whether plants are located in an urban (i.e., within

an SMSA) or non urban area and whether they are owned by single

or multi establishment firms.

A.  Basic Learning Regressions.

The first two columns of table 3 contain OLS estimates for

the base sample where formal stocks of knowledge, proxied by R&D

stocks, are left out of the regressions.  Significant learning

elasticities are estimated for both own and spillover learning in

the first column.  The second column contains the results when

constant returns to scale (CRS) is imposed.  In this case, the

estimated spillover elasticity is not significantly different

from zero.  However, as the results in column 1 show, the

hypothesis of CRS is rejected in this specification.

The last four columns of table 3, contain estimates from the

R&D subsample.  Column 3 includes both stocks of informal

knowledge, as measured by own and industry wide cumulative

output, and formal knowledge, as measured by firm level stocks of

R&D.  The estimated own learning elasticity is still large and

significant.  However, the spillover learning elasticity is



6  To see if this is due to the specification change or to the sample
used, I estimated the specification in the first column on the sample from the
third.  The results, given in column 4, indicate that the change in sample is
responsible for the decrease in the estimated spillover elasticity.

7  Adams and Jaffe did not limit their sample to entrants as I am,
however.  Its possible that productivity enhancing process R&D benefits
established plants relatively more than it does new ones.  Likewise, new
plants producing new products are probably more likely to be the beneficiaries
to product R&D.  This may especially be the case in technically dynamic
industries such as instruments or computers.  Thus, the returns to R&D for
these plants may not be seen so much through productivity increases (what I’m
measuring here), but by fact that they exist at all.  Unfortunately, the
product detail in the LRD is not sufficient to see whether the entrants in
this sample are producing adequately novel products to support this
hypothesis.
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smaller and no longer significant6.

Also, the estimated elasticity on the stock of firm R&D is

small relative to previous studies (e.g., Griliches and Mairesse,

1984 and Hall and Mairesse, 1995).  This may stem from using firm

level data in plant level regressions.  Namely, not all of the

R&D stock of large diversified firms (which make up the bulk of

firms in the R&D data) is available and/or applicable to

individual plants.  Thus, following Adams and Jaffe (1994) I

include the number of plants owned by the firm as a measure of

the relative scale of plant and firm operations to control for

this problem.  Unlike in Adams and Jaffe, including the number of

plants owned by the parent firm in the regressions, as in columns

5 and 7 of table 3, has little effect on the estimated R&D

elasticities for this sample of plants.7

Finally, to relate learning elasticities to the more

familiar notion of learning curve slope, I use the formula, slope

= 2b - 1 , where b is the estimated elasticity (i.e., * or 0). 



14

This number indicates the rate that value added per worker

increases when own or industry wide cumulative output doubles. 

For the elasticities estimated in column 5, this gives learning

curve slopes of 15.8% for own learning and 7.6% for spillover

learning.  Rapping (1965) estimated the slope of the learning

curve for World War II Liberty ships to be between 11% and 29%. 

Although their results are not directly comparable to mine,

Lieberman (1984) and Irwin and Klenow (1994) also get estimates

near 20%.

B.  Plant Characteristics and Learning by Doing 

In this section, I examine the relationship between the

slope of the learning curve and several observable plant

characteristics.  These include worker quality, the skill mix and

R&D intensity.  If a relationship exists between these

characteristics, which can to some extent be altered by plants, 

and the slope of the learning curve, then it is likely that

plants can, at least partially, influence the rate at which they

learn by doing.

Learning by doing is typically thought to occur as workers

perfect their tasks or management finds better ways to organize

production.  If this is the case, then we may expect plants with

higher quality workers to have steeper learning curves. To test

this hypothesis, I proxy worker quality with wages.  For each



8  Namely, I estimate variants of (2) where I replace the terms *(xit -
lit) and 0(zit - lit) with              

j
4

j'1

Dj*j(xit & lit) and j
4

j'1

Dj0j(zit & lit),

respectively, where Dj is a dummy for the jth wage quartile.

9  For regression in the first column of table 4 the Wald statistic for
the hypothesis that all plants have the same own learning elasticity is P2(3)
= 11.31 which is significant at the 5% level.  A similar test for the
regression in the second column yields a test statistic of P2(3) = 12.16 which
is significant at the 1% level. The hypothesis that plants in the four
production worker wage quartiles have the same spillover elasticity can not be
rejected at standard levels of significance for either of the regressions in
the first two columns.
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plant, I compute its average hourly production worker wage. 

Then, for each year, I compute the plant’s relative wage by

dividing its average hourly wage by the mean hourly wage for its

4-digit industry.  Finally, I compute the average relative wage

over all observations for each plant and use this as my plant

level measure of worker quality.  

In the first two columns of table 4, I estimate separate own

and spillover learning elasticities for plants according to which

average (relative) wage quartile plants reside8. The results show

that plants paying, on average, higher production worker wages

have significantly higher own learning elasticities than plants

paying lower wages9.  For example, from the regression in the

first column we see that the slope the own learning curve ranges

from 13.8% (=20.186-1) in the first wage quartile to 18.2% (=20.241-

1) in the third quartile and 17.6% (=20.235-1) in the fourth.  The

patterns of the own and spillover learning curve slopes are
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summarized in panel (a) of figure 1.  The positive relationship

between the slope of the own learning curve and production worker

quality is even stronger in second column regression where plants

in the highest wage quartile have an own learning curve slope of

22.6% compared with 13.1% for plants in the lowest quartile. 

This coupled with the fact that plants that pay higher wages tend

to be larger and, therefore, gain production experience faster

implies that high wage plants receive significantly more benefits

from plant specific learning by doing than do lower wage plants. 

On the other hand, while there is a statistically and

economically significant relationship between production worker

quality, as proxied by wages, and own learning, there is no

significant relationship between spillover learning and worker

quality at these plants.

The finding that production worker quality is positively

associated with proprietary learning by doing is consistent with

the notion that own learning occurs as workers perfect their

tasks.  The first two regressions, in table 4, show that higher

quality production workers perfect their tasks more quickly than

do lower quality workers.

In the last two columns of table 4, I estimate similar

regressions for non production worker wages.  The LRD does not

contain data for hours worked by non production workers. 

Therefore, the quartiles in these regressions refer to average



10  The Wald statistics are P2(3) = 18.47 and P2(3) = 10.05 for the
specifications in columns 3 and 4, respectively.

11  This is an admittedly crude measure but it the best one available in
the LRD.  It has been used with some success by Bernard and Jensen (1996) and
Dunne, Haltiwanger and Troske (1996).
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relative annual non production worker wages.  The hypothesis of

equal own learning elasticities can be rejected for both non

production worker specifications10.   However, as panel (b) of

figure 1 shows, the pattern is less clear than in the production

worker case.  Nevertheless, it appears that the ability of plants

to learn from their own production experience is positively

related to the quality of both its production and non-production

workers.  Worker quality does not, however, appear to be related

to the ability of plants to learn from spillovers.

In addition to its quality, the composition of the plant’s

workforce may affect how the plant learns from both its own and

spillover experience.  In particular, plants with a higher

proportion of skilled workers may be more able to benefit from

learning, all else equal.

In table 5, I examine the effect of the skill mix on a

plant’s ability to learn by doing.  A plant’s skill mix is

proxied by its share of non production workers to total

employment11.  The higher this number, the more skilled is the

plant’s workforce.  The patterns of the estimates across the

skill mix quartiles suggest that plant’s using more skilled

workers have lower own learning coefficients and higher spillover



12  In the first column of table 5, the hypothesis of equal own learning
elasticities across the skill mix quartiles is not rejected with Wald
statistic of P2 (3) = 3.70, however the hypothesis that the own learning
coefficients for the highest and lowest quartiles are equal can be rejected at
the 10% level (P2 (1) = 2.74).  The hypothesis of qual spillover coefficients
across the skill mix quartiles is rejected at the 1% level with a Wald
statistic of  P2 (3) = 14.31.  Neither the equal own or equal spillover
learning hypotheses can be rejected even at the 10% level for the regression
in column of table 5.

18

coefficients.  This result makes sense if one believes that

knowledge, even informal knowledge, generated outside the plant

requires more skilled workers to make it applicable to the

plant’s operations.  However, this pattern is statistically

significant12 for the regression in the first column only.  These

results are depicted in panel (a) of figure 2.

Finally, as in Lieberman (1984), I examine the relationship

between R&D and the slope of the learning curve.  He found that

more R&D intensive industries had steeper learning curves.  To my

knowledge, this relationship has not been tested at the plant or

firm level.  In table 6, I perform a similar exercise as I did

tables 4 and 5.  To classify plants according to R&D intensity, I

compute the average R&D intensity of their parent firm over the

plant’s tenure in the LRD.  

Again, I estimate separate own and spillover learning

elasticities for each average R&D intensity quartile.  The

results indicate that there is no significant difference in

either own or spillover learning elasticities across R&D
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intensity quartiles for these plants.  The results from the first

column regression in table 6, are shown in panel (b) of figure 2

that highlights the lack of a relationship between R&D intensity

and either own or spillover learning by doing.  Thus, the

correlation, between R&D intensity and the slope of the learning

curve, that Lieberman found in product level data for the

chemical industry does not appear in these plant level data for

SIC 38.

C.  Inter vs. Intrafirm Spillovers 

As mentioned above, the study by Lester and McCabe (1993) is

the only one that compares intra and interfirm spillovers.  The

nuclear power industry is rather unique, however, and it would be

interesting to see if their results hold up for different

industries.  Table 7 presents estimates from regressions that

examine this issue.  

The sample used for the regression in the first column is

restricted to those plants owned by firms that have at least two

plants in a given 4-digit industry within SIC 38.  This

regression contains estimates of own and both intra and interfirm

spillovers.  The results suggest that, for the sample of plants

examined here, intrafirm spillovers are quite small compared with



13  The statistical significance of this result is marginal, however.  A
Wald test for the equality of the intra and interfirm spillover elasticities
is significant at only the 10.4% level (P2 (1) = 2.64).  But the result is
economically significant with the interfirm spillover elasticity being 62.5
times the magnitude of the intrafirm spillover elasticity.
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interfirm spillovers13.  This result runs counter to intuition

that suggests that plants should benefit more from the experience

of other plants owned by the same parent firm.  It is also

contrary to the results Lester and McCabe found for nuclear

reactors.

The second column contains estimates where I include firm

and industry level stocks of  experience only (where “firm”

includes all plants in a 4-digit industry owned by the firm). 

Note that, even when firm experience includes the plant, the

coefficient on own firm experience is less than a third as large

as the own plant experience coefficient from the first column.  

The results in table 7 provide additional evidence that the

learning curve is not an effective tool for entry deterrence. 

Not only are there spillovers, but these spillovers tend to be

stronger across plants belonging to different firms than they are

across plants within the firm.

VI.  Conclusions

In this paper, I examined the relationship between several

plant characteristics and learning by doing.  I employed a data

set consisting of plants that entered SIC major group 38,
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instruments, after 1972.  I tested several hypotheses concerning

the relationship between observable plant characteristics and

learning by doing.  The results suggest that (a) “informal”

knowledge, accumulated through production experience at the

plant, is a much more important source of productivity growth for

these plants than is “formal” knowledge gained via R&D

expenditures, (b) interfirm spillovers are stronger than

intrafirm spillovers, © the slope of the own learning curve is

positively related to worker quality, (d) the slope of the

spillover learning curve is positively related to the skill mix

at plants, and (e) neither own nor spillover learning curve

slopes are related to R&D intensities.

These results have important implications for economic

models incorporating learning by doing.  First, the finding that

interfirm spillovers are stronger than intrafirm spillovers adds

to the evidence that the learning curve is an ineffective tool

for entry deterrence.  Second, to the extent that plants and

firms can control the quality and skill mix of their workforces,

the finding that learning curve slopes are related to worker

quality and the skill mix suggests that learning curve slopes are

endogenous.  That is, not only can plants control their rate of

productivity growth by changing the rate at which they accumulate

experience, but they can alter the rate at which equal increments

in the stock of experience increase productivity.  This suggests
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that we may need much richer models of industry evolution in

cases where learning by doing is considered. 

Finally, the findings on worker quality and the skill mix

are consistent with the recent growth models.  These models

suggest  that, by working near the limit of their knowledge, high

quality workers continually learn the skills necessary to produce

even more complex goods and services and that this process leads

to sustained economic growth.  Further, they provide an

explanation for why countries with lower skilled workforces have

a difficult time catching up with the higher skilled developed

countries.  The results in this paper provide evidence, at the

mirco level, that higher skilled workers are those that learn the

most.
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Table 1
Summary of Recent Studies

Paper Industr
y

Unit of
Observat
ion

Dependent
variable

Experience
Indices

Spillover
Sources

Learning curve
slope allowed
to vary

Lieberm
an
(1984)

Chemica
ls

Product Price 
(constant
margins)

Cumulative
Output, Time

Industry
Wide

by R&D
intensity,
capital
intensity,
industry
concentration,
and multi-plant
operations

Lester
and 
McCabe
(1993)

Nuclear
Power

Reactor
(plant)

Reactor
Availability

Reactor Age Intra-site,
Intra-firm,
Inter-firm

by vintage,
reactor class,
vendor and
country

Jarmin
(1994)

Rayon Firm Price
(variable
margins)

Cumulative
Output

Inter-firm by firm

Irwin
and
Klenow
(1994)

Semi -
conduct
ors

Firm Price
(variable
margins)

Cumulative
Output

Inter-firm
(both within
and across
countries),
intergenerat
ion

by country and
chip generation
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Table 2
Summary Statistics

Large Sample
Mean

R&D Subsample
Mean

Number of
Observation

21,729 6,704

Number of Plants 5,992 1,383

First Year 79.7 79.6

Last Year 85.5 85.0

Tenure 5.8 5.4

Observations per
Plant

3.6 4.9

Employment, 1987 114 331

VA/L, 1987 57,346 66,394

K/L, 1987 26,468 30,442

X/L, 1987 560,904 724,787

Z/L, 1987 
(in millions)

10,855 4,653

R&D/L, 1987 - 14,403,638

plant share, 1987 - 0.197

Notes: First Year is the first year in which the plant is
observed in SIC 38 in the LRD. Last Year is the last
year up to 1988 for which the plant is observed in SIC
38 in the LRD. Tenure is (First Year) - (Last Year).
Observations per plant are the number of times the
plants are actually observed in the LRD over the 1972-
1988 period. VA/L is value added per employee. K/L is
the capital/labor ratio. X/L is the plant specific
stock of experience per worker. Z/L is the stock of (4-
digit) industry wide experience net of X per worker.
R&D/L is the stock of R&D per worker and plant share is
the ratio of plant for firm shipments for plants owned
by R&D performing firms.  Further details on variable
sources and construction are available in Appendix A.
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Table 3: Basic Learning Regressions
Dependent variable: log(VA/L)

(Absolute t-statistics in parentheses)

1 2 3 4 5 6 7

log(L) 0.183*

(3.578)
0.138
(1.632)

0.119
(1.389)

0.136
(1.613)

log(K/L) 0.138*

(16.450)
0.137*

(16.387)
0.104*

(6.663)
0.111*

(6.912)
0.104*

(6.666)
0.103*

(6.620)
0.103*

(6.624
)

log(X/L) 0.211*

(22.358)
0.210*

(22.288)
0.211*

(13.912
)

0.219*

(14.379
)

0.211*

(13.877
)

0.210*

(13.894
)

0.210*

(13.85
9)

log(Z/L) 0.176*

(3.465)
-0.005
(0.987)

0.108
(1.288)

0.104
(1.230)

0.105
(1.257)

-0.028*

(-
3.225)

-
0.029*

(-
3.241)

log(R/L) 0.034*

(8.405)
0.036*

(6.351)
0.034*

(8.320)
0.036*

(6.299
)

log(# of
plants)

0.005
(0.438)

0.005
(0.435

)

R2 0.243 0.242 0.220 0.211 0.221 0.220 0.220

N 11,905 11,905 5,026 5,206 5,024 5,026 5,024

Notes: All regressions also include a constant, year
dummies, 4-digit SIC dummies, region dummies and
dummies for whether the plant is located in an urban
area and whether it is owned by a multi plant firm.
* denotes significant at the 1% level.
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Table 4
The Effects of Production and Non-Production Worker Wages on

Learning 
(Absolute t-Statistics in Parentheses)

Production
Workers

Non-
Production
Workers

1 2 3 4

log(L) 0.205*

(4.037
)

0.123
(1.454)

0.198*

(3.883
)

0.134
(1.564

)

log(K/L) 0.128*

(15.37
7)

0.094*

(6.150)
0.130*

(15.39
4)

0.096*

(6.108
)

log(R&D) 0.033*

(5.995)
0.032*
(5.602

)

log(# of
plants)

0.001
(0.107)

0.001
(0.062

)

log(X/L)

by average 
wage

quartile

Q1 0.186*

(13.63
4)

0.177*

(9.351)
0.185*

(13.65
0)

0.180*

(8.904
)

Q2 0.205*

(13.65
0)

0.204*

(10.927
)

0.202*

(13.94
2)

0.199*

(9.162
)

Q3 0.241*

(13.61
2)

  
0.273*  

(7.851)

0.258*

(17.64
4)

0.261*

(11.42
3)

Q4 0.235*

(15.38
4)

0.294*

(7.331)
0.258*

(17.56
2)

0.253*

(3.931
)

log(Z/L)

by average 
wage

quartile

Q1 0.186*

(3.699
)

0.095
(1.151)

0.184*

(3.644
)

0.108
(1.295

)

Q2 0.188*

(3.742
)

0.096
(1.165)

0.186*

(3.658
)

0.110
(1.310

)

Q3 0.179*

(3.528
)

0.074
(0.883)

0.168*

(3.294
)

0.090
(1.068

)
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Q4 0.182*

(3.613
)

0.063
(0.740)

0.186*

(3.668
)

0.085
(0.993

)

R2 0.253 0.235 0.247 0.227

N 11,901 5021 11,803 4994

Notes: All regressions also include a constant, year
dummies, 4-digit SIC dummies, region dummies and
dummies for whether the plant in an urban area and
whether it is owned by a multi plant firm.
* denotes significant at the 1% level.
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Table 5
The Effect of the Skill Mix in Learning
(Absolute t-statistics in parentheses)

log(L) 0.171*

(3.339)
0.135 

(1.560)

log(K/L) 0.133*

(15.926
)

0.099*

(6.420)

log(R&D/L) 0.035*

(6.253)

log(# of plants) 0.005
(0.478)

log(X/L)

by Skill
Quartile

Q1 0.220*

(15.500
)

0.231*

(9.751)

Q2 0.219*

(14.371
)

0.222*

(8.513)

Q3 0.202*

(12.903
)

0.197*

(7.469)

Q4 0.191*

(13.246
)

0.200*

(8.638)

log(Z/L)

by Skill
Quartile

Q1 0.156*

(3.081)
0.089
(1.068)

Q2 0.162*

(3.161)
0.095
(1.110)

Q3 0.171*

(3.350)
0.106
(1.247)

Q4 0.181*

(3.517)
0.107
(1.250)

R2 0.249 0.221

N 11,905 5010

Notes: All regressions also include a constant, year
dummies, 4-digit SIC dummies, region dummies and
dummies for whether the plant in an urban area and
whether it is owned by a multi plant firm.
* denotes significant at the 1% level.
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Table 6
The Effect of  R&D Intensity on Learning 
(Absolute t-Statistics in Parentheses)

log(L) 0.181**

(2.493)
0.153***

(1.791)

log(K/L) 0.108*

(7.617)
0.104*

(6.500)

log(R&D) 0.024*

(3.157)

log(# of plants) -0.001
(0.096)

log(X/L)

by R&D
Quartile

Q1 0.191*

(9.898)
0.197*

(8.221)

Q2 0.204*

(9.528)
0.197*

(8.176)

Q3 0.265*

(11.370
)

0.252*

(9.744)

Q4 0.185*

(8.361)
0.180*

(7.467)

log(Z/L)

by R&D
Quartile

Q1 0.167**

(2.320)
0.129
(1.530)

Q2 0.166**

(2.316)
0.130
(1.548)

Q3 0.149**

(2.028)
0.113
(1.326)

Q4 0.180**

(2.476)
0.141***

(1.666)

R2 0.211 0.224

N 6167 4945

Notes: All regressions also include a constant, year
dummies, 4-digit SIC dummies, region dummies and
dummies for whether the plant in an urban area and
whether it is owned by a multi plant firm.
* denotes significant at the 1% level.
** denotes significant at the 5% level.
*** denotes significant at the 10% level.
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Table 7
Intra vs Interfirm Spillovers

(Absolute t-Statistics in Parentheses)

log(L) 0.132***

(1.736)
0.146**

(2.333)
0.165***

(1.646)

log(K/L) 0.119*

(8.658)
0.123*

(10.532)
0.105*

(5.871)

log(R/L) 0.038*

(5.246)

log(# of plants) 0.015
(1.118)

log(X/L) 0.182*

(13.781)
0.189*

(11.133)

log(F/L) 0.054*

(10.414)

log((F-X)/L) 0.002**

(2.274)
0.0002
(0.175)

log((Z-F)/L) 0.125***

(1.645)
0.131**

(2.113)
0.115
(1.188)

R2 0.205 0.154 0.212

N 5451 8335 3689

Notes: All regressions also include a constant, year
dummies, 4-digit SIC dummies, region dummies and
dummies for whether the plant in an urban area.
* denotes significant at the 1% level.
** denotes significant at the 5% level.
*** denotes significant at the 10% level.
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APPENDIX A

This appendix describes derivation of some of the variables used
in the paper.

Value added is deflated using the 4-digit SIC deflators from the
NBER Productivity Database (see Bartelsman and Gray, 1995).

Capital is the book value of machinery and structures assets
deflated by BEA’s 2-digit capital stock deflators. 

R&D Stock is computed for each firm as Rjt = (1-*)Rjt-1+rjt-1 where
Rjt is the R&D stock for firm j in year t and rjt is firm j’s
R&D expenditures in period t.  These stocks are computed
using the total R&D figure reported in the NSF R&D Survey. 
I use the commonly applied 15% depreciation rate for R&D
stocks (see Hall and Mairesse, 1995).

Own Cumulative Output is computed as Xis = Xis-1 + .5(qis+qis-
1)(years-years-1-1) + qis-1, where Xis is cumulative output for
the sth observation of plant i, qis is real output and years
is the year in which the sth observation occurs.  Real
output is computed as the total value of shipments adjusted
for changes in inventories and deflated with the NBER 4-
digit deflators. This measure tries to account for the fact
the we do not observe many plants in LRD annually.  Most
smaller plants are in the LRD once every five years,
corresponding to the Census of Manufactures.  I, therefore,
impute the change in cumulative output for these smaller
plants

Industry Cumulative Output is computed as Zjt =Zit-1 + Qjt-1 where
Zjt is cumulative industry output in period t and Qjt is real
output for the jth 4-digit industry in period t.  Industry
output is given by Qjt = 3i0j(witqit) for t… (72, 77, 82, 88)
and Qjt = 3i0j(qit) for t= (72, 77, 82, 88), where wit is a
survey weight that is inversely proportional to the plants
probability of being sampled in the Annual Survey of
Manufactures (ASM).



14  Taking longer differences may eliminate this problem but it reduces
the sample even more severely.
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APPENDIX B.  Econometric Issues

There are a number of econometric issues to consider in
estimating models such as (2).  First, it may be inappropriate to
view some of the right hand side variables, such as labor, as
exogenous.  Solutions to this problem include using instrumental
variables (IV) or estimating a multi equation structural model. 
I do not have sufficient data to estimate a structural model so I
present IV estimates in table A.1.  I use lagged values of
employment, capital per worker and knowledge stocks, in addition
to the exogenous dummy variables, as instruments.  The results
indicate that the IV estimates do not differ greatly from the OLS
estimates. 

Another potential problem is that the right hand side
variables may be correlated with unobserved plant characteristics
and OLS estimates of (2) are biased.  If these unobserved plant
characteristics are fixed over time, one can eliminate them in
panel data by differencing.  Table A.2 contains results from
several difference regressions.  The results in the first two
columns show that first differencing reduces the magnitude of the
capital coefficient relative to the levels estimates in table 3. 
Also, the estimated own learning coefficients have the wrong
sign.  While first differencing may sweep out plant fixed
effects, it may also increase the impact of measurement error
(see Griliches and Hausman, 1986).  This may explain the large
and significant negative returns to scale coefficient.  

One way to get around this is to use longer differences.  I
report estimates from third difference regressions in the final
four columns of table A.2.  They appear more reasonable than the
first difference results in that the own learning coefficients
are no longer negative.  However, although they are closer to
zero than in the first difference regressions, the returns to
scale coefficients still indicate significant decreasing returns
to scale.  This suggests that measurement error may still be a
problem14. 

Employing instrumental variables or differencing reduces the
number of observations available for estimation.  Further, it is
not clear that these methods yield better estimates.  I often use
either restricted samples or estimate separate learning
coefficients for different subgroups of plants.  Difference or IV
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estimation methods would impose severe restrictions on the number
of observations available for these regressions.  Therefore, I
estimate all of the regressions, in the paper, in levels to take
advantage of the largest number of observations possible.
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Table A.1
Instrumental Variable Estimates

(Absolute t-Statistics in Parentheses)

OLS IV

log(L) 0.233**

(2.149)
0.267
(1.179)

log(K/L) 0.082*

(4.190)
0.082*

(4.172)
0.102*

(4.416)
0.101*

(4.354)

log(X/L) 0.311*

(14.767
)

0.310
(14.734

)

0.284
(13.454

)

0.281
(13.375

)

log(Z/L) 0.183***

(1.745)
-0.041**

(2.101)
0.241
(1.071)

-0.024
(1.164)

log(R/L) 0.030*

(4.297)
0.028*

(4.007)
0.035*

(4.707)
0.035*

(4.719)

log(# of
plants)

-0.002
(0.149)

-0.040
(0.019)

-0.003
(0.216)

-0.003
(0.202)

R2 0.250 0.249 0.248 0.247

Notes: N=3503.  All regressions also include a constant,
year dummies, 4-digit SIC dummies, region dummies and
dummies for whether the plant in an urban area and
whether it is owned by a multi plant firm.  Instruments
include all the exogenous dummy variables plus lagged
values for capital, R&D, own and industry wide
experience and log(# of plants) of firm shipments.
* denotes significant at the 1% level.
** denotes significant at the 5% level.
*** denotes significant at the 10% level.
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Table A.2
Difference Estimates

(Absolute t-Statistics in Parentheses)

First Differences Third Differences

constant 0.059*

(4.85
7)

0.0001
(0.013

)

0.075*

(4.023
)

0.043*

(2.694
)

0.037
(1.535

)

-
0.051**

(2.341
)

0.087**

(2.451
)

0.024
(0.758

)

log(L) -
0.355*

(6.53
9)

-0.343*

(2.708
)

-0.217*

(5.567
)

-0.264*

(3.306
)

log(K/L) 0.042*

*

(2.57
3)

0.067*

(3.982
)

0.042
(1.447

)

0.051***

(1.704
)

0.041**

(2.260
)

0.052*

(2.779
)

0.042
(1.413

)

0.053***

(1.726
)

log(X/L) -
0.134*

(4.66
1)

-
0.042**

*

(1.647
)

-0.156*

(3.617
)

-0.122*

(3.136
)

0.022
(0.936

)

0.065*

(2.652
)

0.009
(0.281

)

0.028
(0.832

)

log(Z/L) 0.014
(0.52
2)

0.157
(5.675

)

-0.046
(1.172

)

0.029
(0.692

)

0.010
(0.404

)

0.114*

(4.844
)

-0.038
(0.782

)

0.037
(0.801

)

log(R/L) 0.007
(0.288

)

0.064*

(2.730
)

0.006
(0.375

)

0.043**

(2.457
)
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log(# of
plants)

0.039
(0.612

)

0.163*

(3.340
)

0.013 
(0.379

)

0.102*

(3.153
)

R2 0.032 0.019 0.027 0.021 0.040 0.030 0.039 0.032

N 7147 7147 3315 3315 3470 3470 1683 1683

* denotes significant at the 1% level.
** denotes significant at the 5% level.
*** denotes significant at the 10% level.
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